论怎样的施法最可靠,自然是教会处理器自己来完成整套施法流程。
外在的PID处理整体秘能场参数问题,内在的则是AI芯片处理法术模型的计算问题。
人。
根本就不应该存在于这个环节里。
而让芯片学会施展魔法只是第一步。
第二步是让芯片学会抉择!
人类的反应,已经证明无法小于0.1秒,所以短跑认为反应速度超过这个就是抢跑。
然而面对瞬息万变的法术战斗,林奇如果想着1V1的单挑,那么靠他自己一个确实够了。
可如果想着是成为法术战里的万人敌,那么他也更需要一套自动的法术应答机制。
这也是无数法师需要事先针对接下来战斗指定法术战方案的原因,因为他的思维已经无法支撑毫秒级响应的战斗,只能够制定更为全面的计划,然后将其嵌入本能之中。
既然他记忆宫殿内部,有一枚即将诞生的AI芯片,那为何不一条路走到直,顺势把法术应答也开发出来?
而这里就要绕回到最初的的问题。
机器处理1+1,那可以碾压世间万物。
但是机器要知道怎么选择法术,就需要经过漫长路了!
光是一个自动驾驶,让机器来取代人类进行驾驶,就耗费了无数厂家的心血,至今依旧在L2徘徊着。
什么是机器学习?
换个简单的说法
人:1+1=?
机:5
人:1+2=?
机:7
人:3+2=?
机:10
无数次后……
人:1+1=?
机:2。
所谓人工智能。
有多少人工,便有多少智能。
曾经有人距离过一个芒果的例子。
比方要挑选芒果,却又不知道什么样子的芒果好吃,便需要先尝遍所有芒果,然后总结了深黄色的好吃,此后再买自己选择深黄色即可。
而机器学习,便是让机器先尝一边所有芒果,让机器总结出一套规律。
这里的人,需要的便是描述给机器每一个芒果的特征,从颜色大小再到软硬,最终让它输入好吃与否。
剩下的则等机器学习出一套规则,判断“深黄色”芒果好吃。
这个学习过程,便是机器学习,而神经网络便是最为热门的机器学习法。
林奇重新秉心静气,走到记忆宫殿的书架之上,默默翻开最初的书籍。
进度跳的太快,让他不得不赶紧加班加点钻研起接下来的学识,他就像是一位油烧开了才刚开始翻菜谱的厨子。
情况虽然有些万分火急,却又冥冥中有着一种注定。
曾经的阿尔法狗,利用的算法便是蒙特卡洛算法与神经网络算法,而神经网络学习对于所有搞机器学习的都是绕不开的壁垒。
这也是林奇需要快速啃掉的知识点。
此时的他正坐于牢笼之中,内心别无他物地在泥泞的地面上推演起来,丝毫没有顾忌上面的污秽与沙土,仿佛这便是一副宽屏的黑板供他进行演算。
神经网络,顾名思义来自人类的神经元。
基本上经过高中的生物学教学也大多能理解神经元的原理,它中间是一个球形细胞体,一头是细小而繁盛的神经纤维分支,学名树突。