看似初始条件下许秋只做了16片器件,但经过两次复制,总的器件数量已经膨胀到了1000多片。
终于到了激动人心的测试环节了。
因为有加速,所以测试还是比较快的。
基本上连线完成,就可以秒出结果。
差不多平均15秒能测试得到一个结果。
许秋选取了自己蒸镀时手感最好的那批器件,统一选择真空放置时间条件为12小时。
开舱,进行测试。
许秋的策略是,把初次测试效率低于16.5%的器件直接舍弃。
如果初次能达到16.5%,那么就给它三次扫描机会,如果性能达不到17%,就直接舍弃。
就这样,许秋接连测试了1#到12#,共计12片器件。
其中,最好的一个体系是7#,最高效率达到了离17%非常近了。
当时许秋额外破例,给了它更多的几次机会,结果,越测越低,最后他只好放弃。
直到第13#器件,许秋终于第一次拿到了初始效率超过17%的数据,达到了他更换了遮挡板的位置,连续扫描了十个数据,最高效率为许秋想了想,先把14#、15#、16#测了一遍,发现没有其他初始效率超过17%的器件,然后就开始专攻13#。
13#对应的加工条件,是顶电池厚度约130纳米,底电池厚度约190纳米的条件。
许秋找到了13#器件上百个“兄弟姐妹”们,进行测试。
首先,是不同蒸镀批次,同样12小时真空放置时间下的另外9个13#器件,测试完毕后,最高效率提高至接着,是针对效率这个最佳批次下的13#器件,在不同放置时间下的器件进行测试,结果表明,放置时间在16小时的器件,性能最佳,可达拿到了最终的的结果,许秋了长呼一口气。
这一个多小时折腾下来,他基本上没有一刻是能休息的,全程都在专注的进行高强度操作。
许秋有种身体被掏空,进入了“贤者时间”的状态。
好在,结果非常的不错,终于取得了突破。
而且,现在只是初步摸索的结果,之前数据量能做上去的话,器件性能还有进一步提升的空间。
因此,现实中重复出超过17%效率的概率非常的高。
许秋看了眼时间,距离考试结束还有二十分钟左右,便没有急着出去。
他先是将当下的最佳条件,交给模拟实验人员进行批量重复,然后开始盘点叠层器件一步步走过来的历程。
最开始,是基于半透明器件,制备较为简单的“四终端法”叠层器件,当时底电池用的是半透明器件,结果发现即使是薄层金属电极,光损失仍然非常高,最终的器件效率总是小于10%,这说明“四终端法”并不适合有机光伏体系。
于是,许秋选择了“二终端法”,开始重新尝试,结果若干个体系试下来,终于把效率做到了10%。
后来,经过一段时间的工艺摸索,许秋选择了两个高效率的体系,底电池顶电池器件效率终于突破12%,打破了当时叠层器件的世界纪录。
再后来,许秋对“二终端法”的叠层器件的器件结构进行优化,不使用中间的薄层电极作为电荷复合层,而是直接用两层几乎透明的传输层取代,这样可以显著减小顶电池器件的光损失,极大的提升顶电池的电流密度,效率跃升到14%。
接着,许秋在中引入PCBM,用于调控顶电池和底电池之间的光吸收,使两者的短路电流密度可以更加容易的匹配,成功将效率冲上15%,突破了有机光伏领域公认的一大门槛。
然后,许秋看到Y系列受体在叠层器件中的折戟沉沙,觉得在设计叠层器件结构的时候,不能单单以原单结器件的效率为基准,而是要更多的考虑底电池和顶电池的适配情况,于是他将IDIC-4F替换为光吸收范围偏向于短波长范围的IDIC-M,进一步将器件效率往上推进了一些,达到了15.5%。
再然后,许秋试图寻找其他课题组开发的近红外非富勒烯受体,来取代原先组里使用的IEICO-4F,结果发现国家纳米科学技术中心李丹课题组开发出来的COi8DFIC,与之前自己的体系最为匹配,最终效率突破16%。
前几天,学妹心血来潮做了一批器件,结果现实器件的效率反超了模拟实验室的结果,经研究发现“真空放置”可以提升部分体系器件的性能,通过这种策略,成功将效率提升至16.5%以上。