实验室中,许秋和和莫文琳两人一边工作,一边闲聊着。
直到韩嘉莹进入实验室,号称:“我写文章写的有些累了,过来随便看看。”
两人这才停下了交流,各奔东西。
莫文琳转身离开,说道:“我回去写文章啦。”
于是,许秋换了一个聊天的对象,他一边和学妹侃大山,一边制备器件。
旋涂氧化锌,作为第一层传输层;
旋涂PFN-Br,作为第二层传输层;
旋涂不同厚度的作为底电池有效层;
旋涂M-PEDOT,作为第三层传输层;
旋涂氧化锌,作为第四层传输层;
旋涂不同厚度的作为顶电池有效层;
蒸镀三氧化钼,作为第五层传输层;
蒸镀银,作为电极。
这是之前经过优化后得到的最佳加工工艺,许秋直接套用过来。
毕竟现在只是将IDIC-4F更换为IDIC-M,传输层方面的加工工艺大概率不会存在很大的差异。
一直忙活到晚上十点多,许秋终于完成了新的一批IDIC-M体系叠层器件的制备与性能测试,最高效率达到了同时,模拟实验中的IDIC-M体系的初步摸索结果也出来了,最高是还有不小的上升空间。
而IDIC-4F体系的结果,经过这些天的多次优化,目前已经达到了上升空间并不大。
虽然这批IDIC-M体系的叠层器件效率,暂时没有IDIC-4F体系的高,但许秋也不是很在意。
他本来也不指望只靠制备一次器件就实现效率突破,这次尝试,主要是为了验证自己的思路有没有问题。
现在仅仅是初步尝试,IDIC-M的体系就已经做出了与IDIC-4F相当的器件效率,说明当前优化的思路大概率是正确的。
也就是说,有很大的几率能把叠层器件效率上限,再往上提升一些,或许能够达到15.5%以上。
至于能不能上16%,这就要看运气了。
完成了现实中的初次尝试,剩下的工作,许秋主要还是打算交由模拟实验室进行大范围的摸索。
因为相较于普通的单结器件,双终端法制备的叠层器件在优化时的工作量翻倍都不止,有系统的帮忙可以省下不少时间。
具体来说,在单结电池中,只有唯一的有效层,只需要优化一个有效层的膜厚,摸索范围通常在80-150纳米之间。
而且对于绝大多数的有机光伏体系,把有效层的膜厚做到100纳米左右,就算偏离了最佳膜厚,通常也能达到最佳膜厚效率的90%。
如果不是冲刺效率的工作,可以做的不那么精细。
而双终端法制备的叠层器件,有两个有效层,需要同步优化两个膜厚。